Genetic Algorithms and Optimal Control Problems

Zbigniew Michalewicz* Jacek B. Krawczyk! Mohammad Kazemi?

Cezary Z. Janikow?

29th CDC

Abstract

This paper studies the application of the genetic algorithm to discrete-time optimal con-
trol problems. Numerical results obtained here are compared with a system for construction
and solution of large and complex mathematical programming models, GAMS. While GAMS
appears to work well only for linear quadratic optimal control problems or problems with
short horizon, the genetic algorithm applies to more general problems equally well.

1 Introduction

This paper studies the numerical optimization of discrete-time dynamic control systems. As it is
well known, the task of designing and implementing algorithms for the solution of optimal control
problems is a difficult one. The highly touted dynamic programming is a mathematical technique
that can be used in variety of contexts, particularly in optimal control (cf. [Bertsekas, 1987]).
However, this algorithm breaks down on problems of moderate size and complexity, suffering
from what is called the “curse of dimensionality” by its developer (see [Bellman, 1957]).

In particular, optimal control problems are quite difficult to deal with numerically. Some
numerical dynamic optimization programs available for general users are typically offspring of the
static packages [Brooke et al., 1988] and they do not use dynamic-optimization specific methods.
Thus the available programes do not make an explicit use of the Hamiltonian, transversality
conditions, etc. On the other hand, if they did use the dynamic-optimization specific methods,
they would be even more difficult to be handled by a layman.

Genetic algorithms, which will be explained in Section 2 of this paper, require little knowl-
edge of the problem itself. Therefore computations based on these algorithms are attractive to
users without the numerical optimization background. Genetic algorithms have been quite suc-
cessfully [Goldberg, 1989], [DeJong, 1985], [Vignaux & Michalewicz, 1989a,b] applied to static
optimization problems like wire routing, scheduling, transportation problem, travelling sales-
man problem, efc., but to the best of authors’ knowledge they have not been applied to optimal

*Department of Computer Science, University of North Carolina, Charlotte, NC 28223, USA

TFaculty of Commerce and Administration, Quantitative Studies Group, Victoria University of Wellington,
PO Box 600, Wellington, New Zealand

tDepartment of Mathematics, University of North Carolina, Charlotte, NC 28223, USA

$Department of Computer Science, University of North Carolina, Chapel Hill, NC, 27599, USA

control problems. The aim of the present paper is to make an effort in filling this gap. In our
study, to better evaluate the performance of genetic algorithm, we use a version (called Student
Version) of a computational package for construction and solution of large and complex mathe-
matical programming models, called GAMS ([Brooke et al., 1987]). In the rest of the paper we
will refer to this system as GAMS only.

The remainder of this paper is organized as follows. Section 2 gives an overview of genetic
algorithms. In Section 3 two simple optimal control problems are formulated, and solved an-
alytically so that the reference points for comparisons are available. In Section 4 the results
of application of the genetic algorithm to the control problems are presented. In Section 5 the
analytical solutions of the test problems are presented, and the genetic algorithm performance
is compared with that of GAMS. Section 6 provides some concluding remarks.

2 Genetic Algorithms

Genetic algorithms ([Davis, 1987], [De Jong, 1985], [Goldberg, 1985], [Holland, 1975]) are a class
of probabilistic algorithms which begin with a population of randomly generated candidates
and “evolve” towards a solution by applying “genetic” operators, modelled on genetic processes
occurring in nature. As stated in Davis (1987):

“... the metaphor underlying genetic algorithms is that of natural evolution. In

evolution, the problem each species faces is one of searching for beneficial adap-
tations to a complicated and changing environment. The ‘knowledge’ that each
species has gained is embodied in the makeup of the chromosomes of its members.
The operations that alter this chromosomal makeup are applied when parents re-
produce; among them are random mutation, inversion of chromosomal material, and
crossover—exchange of chromosomal material between two parents’ chromosomes.”

Let us consider the problem of finding a minimum of a function f(x).

The optimization problem may include constraints. In such a case the problem can be han-
dled through minor modifications of the algorithm, such as usual Lagrange multipliers method
or other methods (see [Michalewicz & Schell, 1990]).

For a given optimization problem, at each iteration ¢ of a genetic algorithm we will maintain
a population of solutions P(t) = {z!,...,z!}, where z! is a feasible solution, ¢ is an iteration
number and n is arbitrarily chosen length of the population. This population would undergo
“natural” evolution. In each generation relatively “good” solutions will reproduce; the relatively
“bad” solutions will die out, and will be replaced by the offsprings of the former ones. To
distinguish between the “good” and “bad” solutions we will use f(z!) which will play a role of

the environment (see Figure 1).

During iteration ¢, the genetic algorithm maintains a population P(t) of some solutions
zY, ...,z (the population size n remains fixed for the duration of the computation). Each
solution z! is evaluated by computing f(z!), which gives us some measure of “fitness” of the
solution (obviously, the lower f(z!), the better). Next, at iteration ¢ + 1 a new population is
formed: we select solutions to reproduce on the basis of their relative fitness, and then the
selected solutions are recombined using genetic operators (crossover and mutation) to form a

new set of solutions.

procedure genetic algorithm
begin
t=0
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin
t=t+1
select P(t) from P(t — 1)
recombine P(t)
evaluate P(t)
end
end

Figure 1: A simple genetic algorithm.

The crossover combines the features of two parent structures to form two similar offspring.
Crossover operates by swapping corresponding segments of a string of parents. For example,
if parents are represented by five-dimensional vectors, say =7 = (a1,b1,¢1,d1,e1) and x9 =
(ag, by, c2,ds, e3), then crossing the vectors between the second and the fifth components would
produce the offspring (a1, b1, ca,ds, e2) and (ag, ba, c1,dy,€1).

A mutation operator arbitrarily alters one or more components of a selected structure—
this increases the variability of the population. Each bit position of each vector in the new
population undergoes a random change with the probability equal to the mutation rate, which
is kept constant throughout the computation process.

A genetic algorithm to solve a problem must have 5 components:

1. A genetic representation of solutions to the problem;
2. A way to create an initial population of solutions;

3. An evaluation function that plays the role of the environment, rating solutions in terms of
their “fitness”;

4. Genetic operators that alter the composition of children during reproduction; and

5. Values for the parameters that the genetic algorithm uses (population size, probabilities
of applying genetic operators, etc.).

In our implementation we have used a modified genetic algorithm designed to work on
numerical problems. It performed much better than other similar implementations. The details
of this algorithm will be presented shortly in a separate publication.

3 Two Optimal Control Problems

Two simple discrete-time optimal control models have been chosen as test problems for the
genetic algorithm.

The first is a one-dimensional linear-quadratic model:

min g 2%+ $r5g (s - o + 7 u) (1)
subject to
Tke1=0a-Tp+b-ug, k=0,1,....N —1, (2)

where x4 is given, a, b, q, s, are given constants, x; € R, is the state and u; € R is the control
of the system.

The second test problem is

max Z,]Cv:_ol VU (3)
subject to

Tht1 = Q- T — Ug (4)
and

To = TN (5)

where initial state zg is given, a is a constant, and z; € R and u; € R are the state and the
(nonnegative) control, respectively.

Let us recall that the value for the optimal performance of (1) subject to (2) is
J* = Koz (6)
where K}, is the solution of the Riccati equation

Ky =s5+7ra?Kg;1/(r + 0Ky 1), and (7)
KN =4q.

The optimal value J* of (3) subject to (4) and (5) is (after elementary calulations):

J* = [ro(aV-1)? (8)

aN-1.(a—1)

The optimal control and state trajectory can obviously be determined analytically as well.

The value N = 45 is chosen as the largest horizon for which a comparative numerical solution
from GAMS was still achievable.

Problem (3) subject (4) and (5) will be solved for the following values of N: N =2, N =4,
N =10, N = 20, and N = 45.

In the sequel, the problem (1) subject to (2) will be solved for the following sets of the parameters:

Case | N | xg S r q a b
11|45 | 100 1 1 1 1 1

II | 45 | 100 10 1 1 1 1
IIT | 45 | 100 | 1000 1 1 1 1
IV | 45 | 100 1 10 1 1 1
V | 45 | 100 1 | 1000 1 1 1
VI | 45 | 100 1 1 0 1 1
VII | 45 | 100 1 1| 1000 1 1
VIII | 45 | 100 1 1 11 0.01 1
IX | 45 | 100 1 1 1 11]0.01
X | 45 | 100 1 1 1 1| 100

Table 1. Ten test cases.
Generations Factor
Case 1 100 1,000 | 10,000 | 20,000 | 30,000 | 40,000

I 17807.4 | 3.27985 | 1.74689 | 1.61866 | 1.61825 | 1.61804 | 1.61803 10?

IT | 13670.4 | 5.33177 | 1.45968 | 1.11349 | 1.09205 | 1.09165 | 1.09163 10°
IIT || 17023.8 | 2.87485 | 1.07974 | 1.00968 | 1.00126 | 1.00104 | 1.00103 107
IV || 15077.3 | 8.64310 | 3.75530 | 3.71846 | 3.70812 | 3.70165 | 3.70160 10*
V|| 5956.43 | 12.2559 | 2.89769 | 2.87727 | 2.87646 | 2.87570 | 2.87569 10°
VI | 16657.7 | 5.07047 | 2.05314 | 1.61869 | 1.61830 | 1.61806 | 1.61806 10%
VII || 2680666 | 19.2684 | 7.02566 | 1.63464 | 1.62412 | 1.61888 | 1.61882 10*
VIIT || 116.982 | 67.1758 | 1.92764 | 1.00009 | 1.00005 | 1.00005 | 1.00005 10%
IX || 7.18263 | 4.42849 | 4.37093 | 4.31504 | 4.31024 | 4.31004 | 4.31004 10°
X || 9870352 | 138132 | 16096.0 | 1.38244 | 1.00041 | 1.00010 | 1.00010 10%

Table 2. Genetic Algorithm for problem (1)—(2).

4 Experiments and Results

In this section we present the results of the modified genetic algorithm for optimal control
problems.

For problem (1)—(2), each element of the population is a real vector (initialized randomly);
during the evolution process the best vectors reproduce (crossover, mutation: see Section 2) and
create offspring. Because of the lack of constraints, every offspring is an admissible element of
the population.

For each case, we have repeated 3 separate runs of 40,000 generations, and the best of
those are reported in Table 2, along with intermediate results at some generation intervals. For
example, the values in culumn “10,000” indicates the partial result after 10,000 generations,
while running 40,000. It is important to note that such values are worse than those obtained
while running only 10,000 generation, due to the nature of some genetic operators.

Generations

N 1 100 1,000 10,000 20,000 30,000 40,000
2 6.3310 6.3317 6.3317 6.3317 6.3317 6.3317 6.331738
4 12.6848 | 12.7127 | 12.7206 | 12.7210 | 12.7210 | 12.7210 | 12.721038
8| 254601 | 25.6772 | 25.9024 | 25.9057 | 25.9057 | 25.9057 | 25.905710
10 | 32.1981 | 32.5010 | 32.8152 | 32.8209 | 32.8209 | 32.8209 | 32.820943
20 | 65.3884 | 68.6257 | T73.1167 | 73.2372 | 73.2376 | 73.2376 | 73.237668
45 | 167.1348 | 251.3241 | 277.3990 | 279.0657 | 279.2612 | 279.2676 | 279.271421

Table 3. Genetic Algorithm for problem (3)—(5).

In the next section we will compare these results with the exact solutions and solutions
obtained from the computational package GAMS.

Problem (3)—(5) differs from the first problem in the sense that not every randomly initialized
vector (ug, ...,un_1) of positive real numbers generates an admissible sequence zj, (see condition
(4)) such that o = z, for given a and xy. In our version of genetic algorithm, we have generated
a random sequence of ug, ..., un_o, and have set uy_1 = a-xny_1 — . For negative uy_1, we
have discarded the sequence and repeated the initialization process: this happened in less than
10% of cases.

The same difficulty occured during the reproduction process. An offspring (after some genetic
operations) need not satisfy the constraint: 2y = xy. In such a case we replaced the last
component of the offspring vector u using the formula: uy_1 =a-xny_1 — xn. Again, if uy_1
turns out to be negative, we do not introduce such offspring into new population (again, the
number of such cases did not exceed 10%).

Table 3 summarizes our results. Problem (3)—(5) is solved for the following values of N:
N =2, N=4, N =10, N = 20, and N = 45. The population size is fixed at 70; we present
also the intermediate values after the first, 100th, 1000th, 10,000th, 20,000th and 30,000th
generations.

It appears that in this case, 10,000 generations is sufficient: the improvement in the next
30,000 generations is insignificant.

5 Genetic Algorithms Versus Other Methods

In this section we compare the above results with the exact solutions as well as those obtained
from the computational package GAMS.

Exact solutions of the test problems for the values of the parameters specified in Table 1
have been obtained using formulae (6) and (7).

To highliht the performance and competitiveness of the genetic algorithm, the same test
problems were solved using GAMS. The comparison may be regarded as not totally fair for the
genetic algorithm, since GAMS is based on search methods particularly appropriate for linear-
quadratic problems. Thus the problem (1)—(2) must be an easy case for this package. On the

Exact solution Genetic Algorithm GAMS
Case value value D value D
I 16180.3399 16180.3939 | 0.000% 16180.3399 | 0.000%
1 109160.7978 109163.0278 | 0.002% 109160.7978 | 0.000%
IIT | 10009990.0200 | 10010391.3989 | 0.004% | 10009990.0200 | 0.000%
v 37015.6212 37016.0806 | 0.001% 37015.6212 | 0.000%
\Y% 287569.3725 287569.7389 | 0.000% 287569.3725 | 0.000%
VI 16180.3399 16180.6166 | 0.002% 16180.3399 | 0.000%
VII 16180.3399 16188.2394 | 0.048% 16180.3399 | 0.000%
VIII 10000.5000 10000.5000 | 0.000% 10000.5000 | 0.000%
X 431004.0987 431004.4092 | 0.000% 431004.0987 | 0.000%
X 10000.9999 10001.0045 | 0.000% 10000.9999 | 0.000%

Table 4. Comparison of solutions for the linear-quadratic model.

N | Exact solution GAMS GAMS+ Genetic Alg
value D | value D value D
2 6.331738 | 4.3693 | 30.99% | 6.3316 0.00% 6.3317 | 0.000%
4 12.721038 | 5.9050 | 53.58% | 12.7210 | 0.00% | 12.7210 | 0.000%
8 25.905710 * 18.8604 | 27.20% | 25.9057 | 0.000%
10 32.820943 * 22.9416 | 30.10% | 32.8209 | 0.000%
20 73.237681 * * 73.2376 | 0.000%
45 279.275275 * * 279.2714 | 0.001%

“*” means that

Table 5. Comparison of solutions for the linear-quadratic model. The symbol
the GAMS failed to find any reasonable value and gave a warning: “The final point is not close

to an optimum”.

other hand, if for these test problems the genetic algorithm proved to be competitive, or close
to, there would be an indication that it should behave satisfactorily in general. Tables 4 and 5
summarise the results, where columns D refer to the percentage of the relative error.

As shown above the performance of GAMS for the linear-quadratic problem is perfect. How-
ever, this was not at all the case for the second test problem.

To begin with, none of the GAMS solutions was identical with the analitical one. The
difference between the solutions were increasing with the optimization horizon as shown below
(Table 5), and for N > 4 the system failed to find any value.

It appears that GAMS is sensitive to non-convectness of the optimizing problem and to the
number of variables. Even adding an additional constraint to the problem (ugy; > 0.1 - uy) to
to restrict the feasibility set so that the GAMS algorithm does not “lose itself”!) has not helped
much (see column “GAMS+"). As this column shows, for optimization horizons suffciently long
there is no chance to obtain a satisfactory solution from GAMS.

!This is “unfair” from the point of view of the genetic algorithm which works without such help.

6 Conclusions

In this paper we have initiated the study of the application of the genetic algorithm to discrete-
time optimal control problems. A modified version of the genetic algorithm has been applied to
two rather simple classes of optimal control problems. The numerical results are compared with
those obtained from a search-based computational package (GAMS). It is shown, that while
GAMS appears to work well only for linear-quadratic optimal control problems, or problems
with short horizon, the genetic algorithm applies to more general problems and appears to be
competitive with search-based methods.

Two main conclusions can be drawn from this paper.

The first conclusion is that genetic algorithms can be successfully applied to optimal control
problems. In particular, the results which were obtained are encouraging because:

e the closeness of the numerical solution to the analytical one was satisfying,

e the coding and computation efforts (compared to those of a static-optimization version
and, in fact, in general) were reasonable (less that 1000 lines of code in C, and, for 40,000
generations, less than 10 minutes of CPU time on CRAY Y-MP).

The second conclusion is that our program based on a genetic algorithm approach resulted in
a more reliable version than a “commercial” computation package (GAMS). While the genetic
algorithm gave us results comparable with the analytic solutions for both test models, GAMS
failed for one of them.

References

[Bellman, 1957] Bellman, R., Dynamic Programming, Princeton University Press, Princeton,
N.J., 1957.

[Bertsekas, 1987] Bertsekas, D. P., Dynamic Programming. Deterministic and Stochastic
Models, Prentice Hall, Englewood Cliffs, N.J., 1987.

[Brooke et al, 1988] Brooke, A., Kendrick, D., and Meeraus, A., GAMS: A User’s Guide,
The Scientific Press, 1988.

[Davis, 1987] Davis, L., (editor), Genetic Algorithms and Simulated Annealing, Pitman, Lon-
don, 1987.

[De Jong, 1985] De Jong, K.A., Genetic Algorithms: A 10 Year Perspective, Proceedings of
an International Conference on genetic Algorithms and Their Applications, Pittsburgh,
pp.169-177.

[Goldberg, 1989] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison Wesley, 1989.

[Grefenstette, 1986] Grefenstette, J.J. Optimization of Control Parameters for Genetic Al-
gorithms, TEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-16, No.1,
January/February 1986, pp.122-128.

[Holland, 1975] Holland, J., Adaptation in Natural and Artificial Systems, Ann Arbor: Uni-
versity of Michigan Press, 1975.

[Holland, 1986] Holland, J., Escaping Brittleness, in Machine Learning II, ed. R. Michalski,
J. Carbonell, T. Mitchel, Morgan Kaufmann Publ., Los Altos, CA.

[Holland et al., 1986] Holland, J.H., Holyoak, K.J., Nisbett, R.E., and Thagard, P.R., In-
duction, The MIT Press, 1986,

[Michalewicz et al., 1989] Michalewicz, Z., Vignaux, G.A., Groves, L. Genetic Algorithms
for Approximation and Optimization Problems, Proceedings of the 11th New Zealand Com-
puter Conference, Wellington, August 16-18, 1989, pp.211-223.

[Michalewicz & Schell, J., 1990] Michalewicz, Z., and schell, J., Data Structures + Genetic
Operators = Evolution Programs, submitted for the International Conference on Tools for
AT, Washington, November 6-9, 1990.

[Michalewicz et al., 1990] Michalewicz, Z., Vignaux, G.A., Hobbs, M., A Genetic Algorithm
for the Nonlinear Transportation Problem, submitted to the ORSA Journal on Computing.

[Vignaux & Michalewicz, 1989a] Vignaux, G.A., Michalewicz, Z., Genetic Algorithms for
the Transportation Problem, Proc. 4th International Symposium on Methodologies for
Intelligent Systems, Charlotte, October 12-14, 1989, pp.252-259.

[Vignaux & Michalewicz, 1989b] Vignaux, G.A., Michalewicz, Z., A Genetic Algorithm for
the Linear Transportation Problem, submitted to IEEE Transactions on Systems, Man,
and Cybernetics.

